Key to the success of e-learning studies-Strategies of finding innovative research topics

National Taiwan University of Science and Technology Graduate Institute of Digital Learning and Education Gwo-Jen Hwang, Chair Professor gjhwang.academic@gmail.com

Criteria for implementing successful research of e-learning

- Determine a good research topic
- Have a proper experimental design
- Write a quality paper to present the research findings and implications
- Submit the paper to a suitable journal

A paper is directly rejected owing to the following reasons:

- No innovation (i.e., no academic contribution)
- Problematic experimental design
- Out of the scope of the journal
- Poor written
- Failing to follow the format or rules (e.g., length limitation) of the journal

Key to the success of a studyadding innovations to the study

- Two problems:
- How to Judge whether a research topic is innovative or not?
- How to find innovations for our studies?

A simple test

- Examples of research projects approved by MOST in 2010

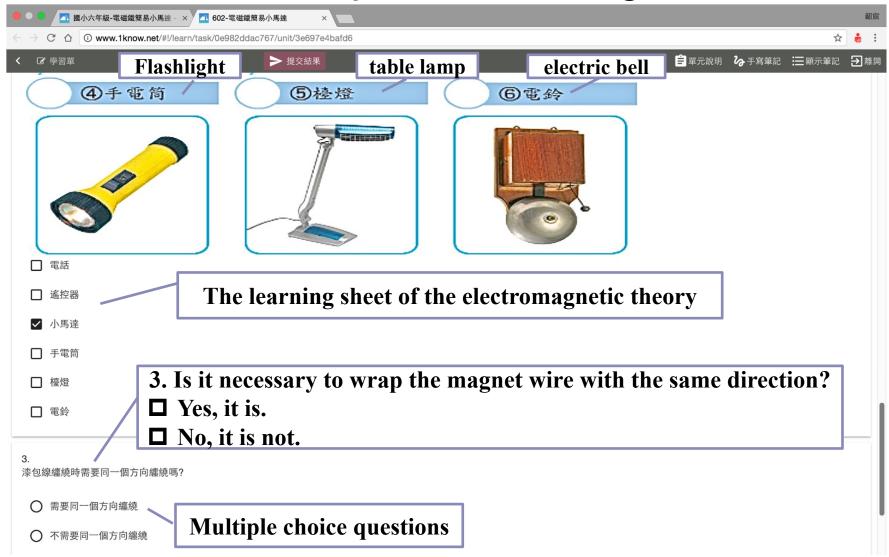
謝X隆	從WEB 2.0到WEB 3.0:資訊科技對學習動機、歷程與評量的影響 From Web2.0 to Web 3.0: Impacts of information technologies on students' learning motivation, learning process and performances
陳 X 溥	遊戲式學習之動機設計與成效評估 執行起迄: 20100801~20130731 Motivation-oriented Design and performance evaluation for game- based learning
邱 x 慧	 導入「惡魔代言人(故意唱反調的人)」角色對學童參與線上合作論 證及發展論證能力的影響 執行起迄: 20100801~20110731 Impacts of the lead-in of Demon spokesperson (a character who always proposes opposite opinions) on young students' participation in collaborative argumentation and development of argumentation ability
洪 x 昭	iPhone之互動式行動學習系統遊戲開發計畫 執行起迄: 20101001~20110930 Development of iPhone-based interactive mobile gaming systems

魏X貞	數位化幼兒情緒能力發展系統檢測平台建置及效益評估
	執行起迄: 20100801~20110731
	Implementation and evaluation of an emotional intelligence
	assessment platform for preschool children
莊X嚴	認知風格對數位遊戲中推理能力訓練之影響
	執行起迄:20100801~20130731
	Impacts of students' cognitive styles on their reasoning
	performances in digital games
林X鏘	運用眼動分析於無所不在擴增實境數位學習系統之使用性評估
	執行起迄:20100801~20110731
	The Usability Evaluation of Employing Eye Movement Analysis in AR-
	based Digital Learning System
林 X 志	擴增實境融入之教學發展與成效評估
	執行起迄:20100801~20110731
	Evaluating the effectiveness of incorporating AR into teaching design

Add innovations to e-learning studies

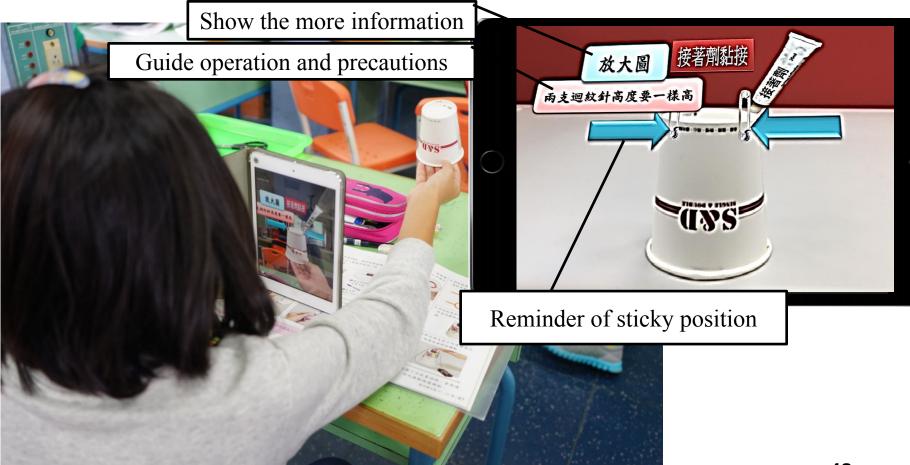
- Adopting new technologies (e.g., IOT, wearable devices) or using technologies in an innovative way (AR in flipped classrooms)
- Proposing new learning strategies or using the existing strategies in new contexts (e.g., concept map-based gaming approach)
- Applying e-learning approaches to seldom-considered subjects (e.g., gifted students, working adults, students with different high anxiety)
- Applying e-learning approaches to seldom investigated domains (e.g., art, design, business, nursing education, and enterprise training)
- Investigating seldom-discussed issues (e.g., problemsolving ability, reasoning performance, learning behaviors)

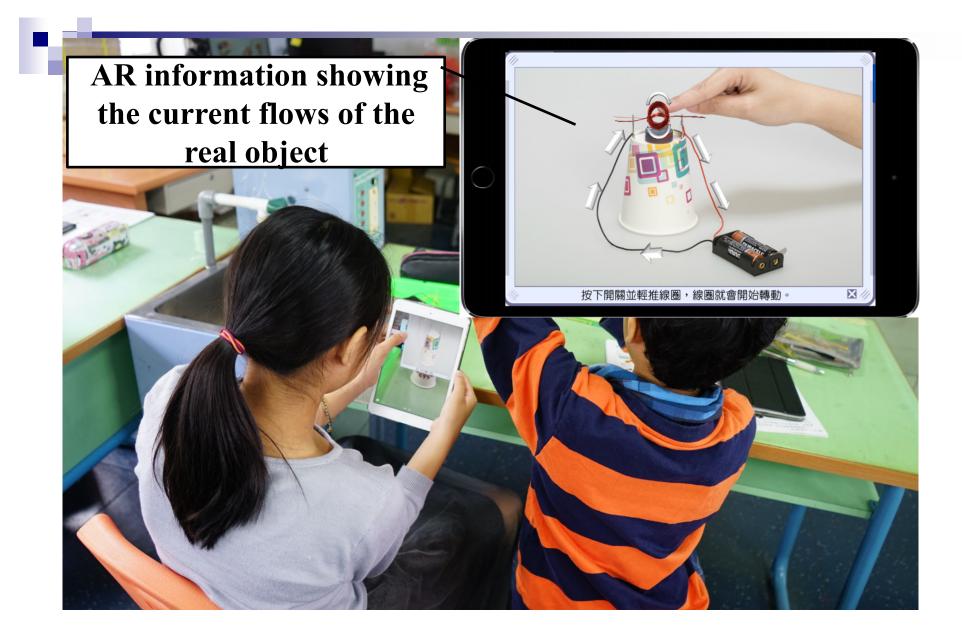
Impacts of an augmented reality-based flipped learning guiding approach on students' scientific project performance and perceptions


- Course unit: magnetic force
- A combination of AR + flipped learning
- In-class team-based learning activity: develop a motor
- Evaluating students' learning achievement, critical thinking tendency, group self-efficacy, motivation and cognitive load

Chang, S. C., & <u>Hwang*, G. J.</u> (2018). Impacts of an augmented reality-based flipped learning guiding approach on students' scientific project performance and perceptions. *Computers & Education, 125*, 226-239.

Before-class: watching instructional videoselectromagnetic theory and the process of developing a motor


Before-class: complete a learning sheet



In-class (control group): develop a motor following the instruction of a mobile learning system

In-class (experimental group): develop a motor following the instruction of an AR system

Results-learning motivation

	Group	N Mean SD Adjusted SE F Mean
Post-test	Experimental Group	56 4.04 0.66 4.10 0.88 139.00***
	Control group	55 2.63 0.61 2.56 0.89
$***_{n < 001}$		

p<.001

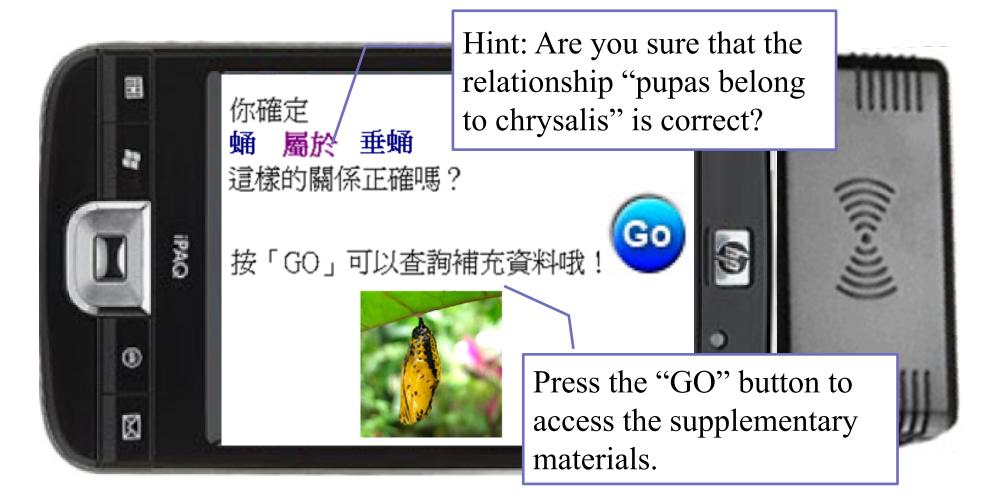
Results- Critical thinking tendency

	Group	N	Mean	SD	Adjusted Mean	SE	F
Post-test	Experimental Group	56	4.07	0.75	4.13	0.10	95.66***
Post-test	Control group	55	2.65	0.71	2.59	0.11	

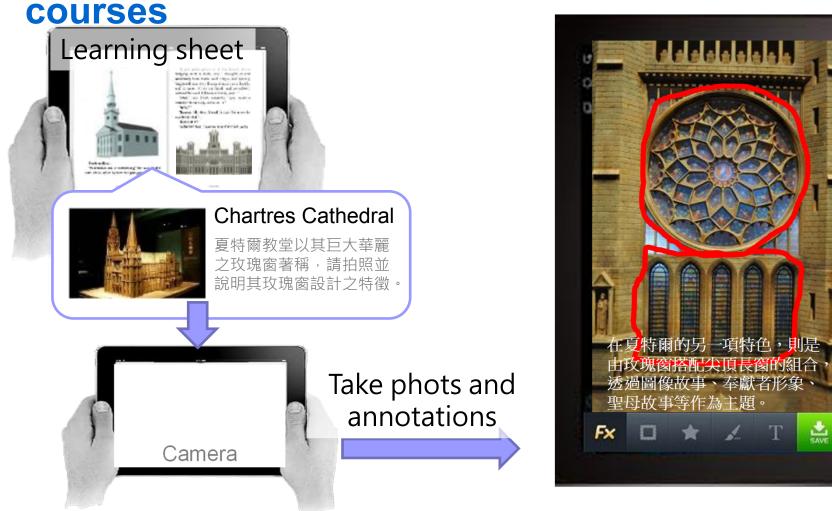
****p*<.001

Results- Group self-efficacy

	Group	Ν	Mean	SD	Adjusted Mean	SE	F
Post-test	Experimental Group	56	4.12	0.71	4.17	0.84 57.	75***
1 051-1051	Control group	55	3.30	0.57	2.24	0.85	


****p*<.001

An Interactive Concept Map Approach to Supporting Mobile Learning Activities for Natural Science Courses


- proposing an interactive concept map approach for mobile learning
 - The students are asked to submit a concept map developed based on their observations in the field
 - The m-learning systems instantly provides hints or guidance to the students

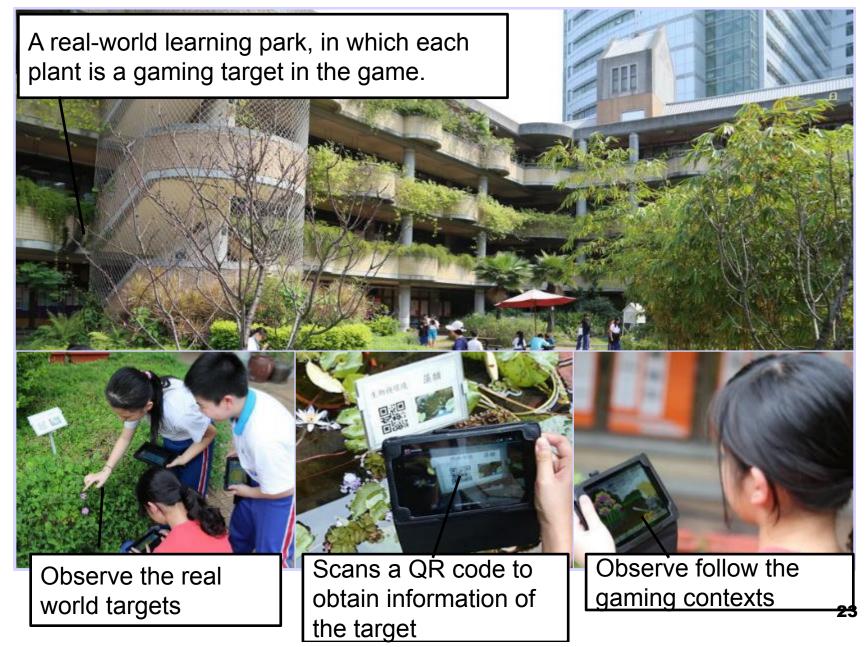
Hwang, G. J., Wu, P. H., & Ke, H. R. (2011). An interactive concept map approach to supporting mobile learning activities for natural science courses. *Computers & Education*, *57*(4), 2272-2280. (SSCI)

Provide instant comments on students' concept maps

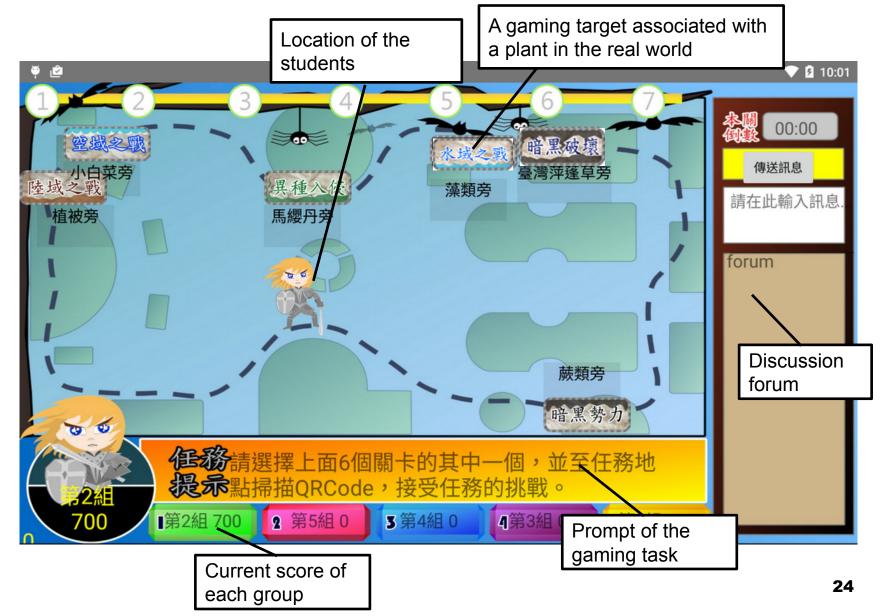
A prompt-based annotation approach to conducting mobile learning activities for architecture design

Sung, H. Y., <u>Hwang*, G. J.</u>, Liu, S. Y., & Chiu, I. H. (2014). A prompt-based annotation approach to conducting mobile learning activities for architecture design courses. *Computers & Education, 76*, 80-90. (SSCI) ¹⁹

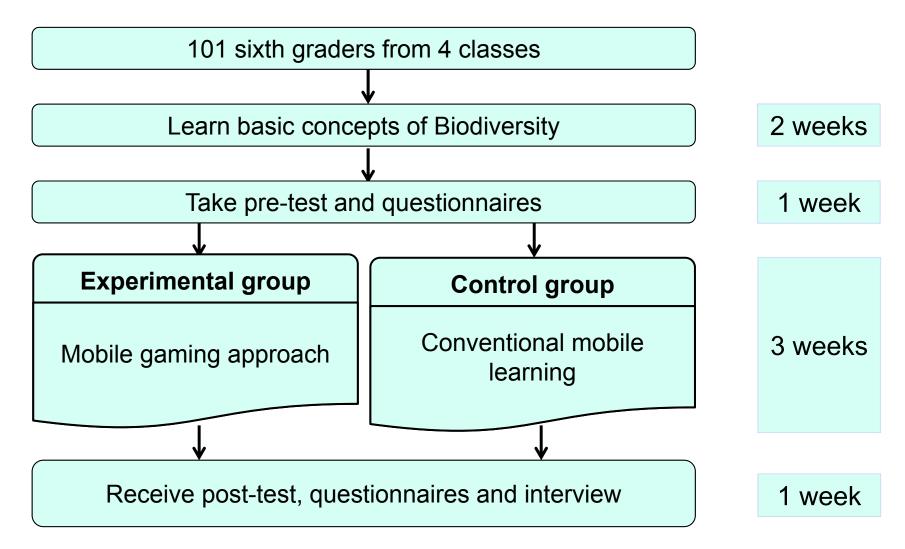
Influences of an inquiry-based ubiquitous gaming design on students' learning achievements, motivation, behavioral patterns, and tendency towards critical thinking and problem solving


- Location: Campus of an elementary school
- Measuring students'

 learning achievements
 learning motivation
 behavioral patterns
 tendency toward critical thinking and


problem solving

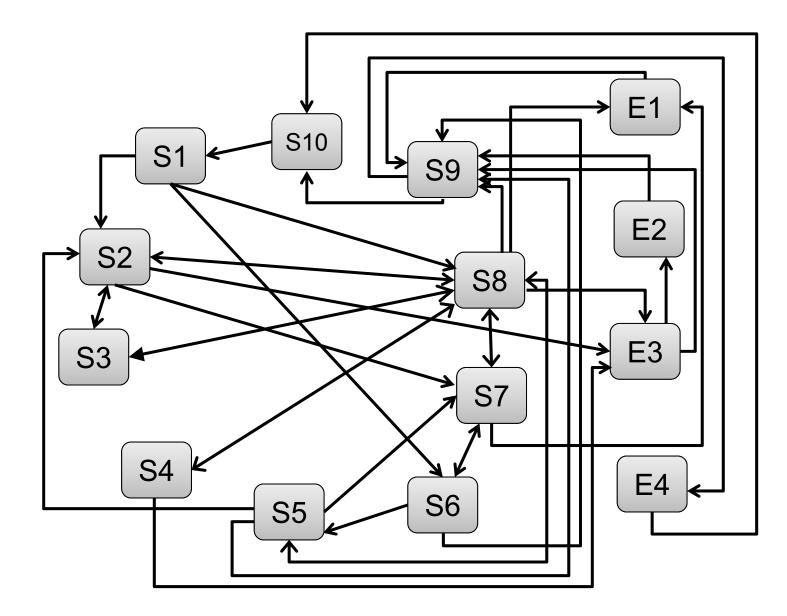
Hwang, G. J., & Chen, C. H. (2016). Influences of an inquiry-based ubiquitous gaming design on students' learning achievements, motivation, behavioral patterns, and tendency towards critical thinking and problem solving. *British Journal of Educational Technology*, *48*(4), 950-971. **(SSCI)**


The real-world learning environment

The gaming interface

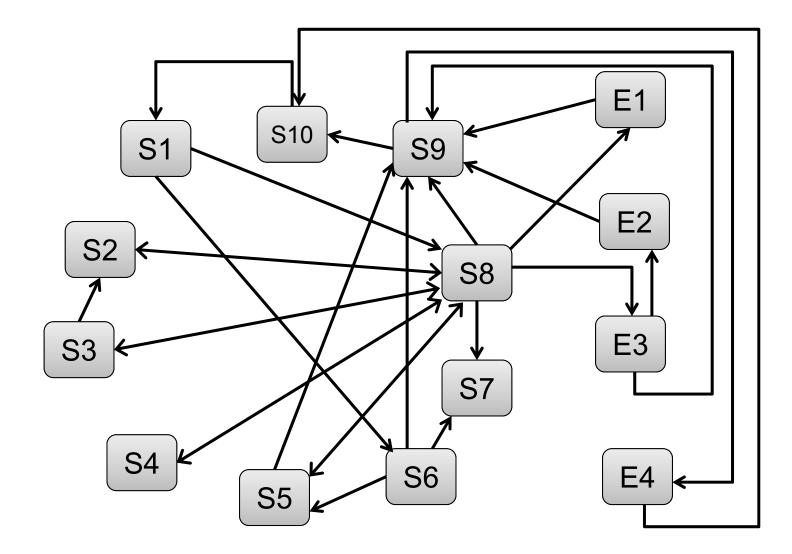
The Experiment Procedure

Code	Behavior	description	Example	Record
S1	Selection of a task	Scan a QR-Code and start a new gaming task.	Choose the stage of the "Hostile Water".	Touch a "game stage" button
S2	Field observation	Observe the key characteristic of the creature or environment.	Please pay attention to the growth of algae and the color of the water.	Touch a blue shield
S3	Clue search	Obtain some key clues.	Please observe the circumstance of the territorial waters, including surface waters and deep waters.	Contact a sage
S4	Comparison	Observe a comparative creature or environment with counter characteristic.	Please scan the QR code next to the aquarium in the natural science classroom.	Touch a red shield
S5	Data search	Start a web search engine.	Look for the solutions to the problem on the Internet	Touch a crystal ball
S6	Reading supplementary materials	Provided with the relationship between the creature and environment.	Illustrates the relationship between Algal Blooms and Eutrophication	Read a treasury
S7	Review the task	Review the task of the stage.	Please explain the cause or effect of eutrophication	Contact an owl
S 8	Pose a method	Submit an answer.	Reducing phosphates	Press the "submit" button
S9	Correctly recognize a creature /	Correctly answer a multiple-choice	What is the color of the water with	Submit a right answer

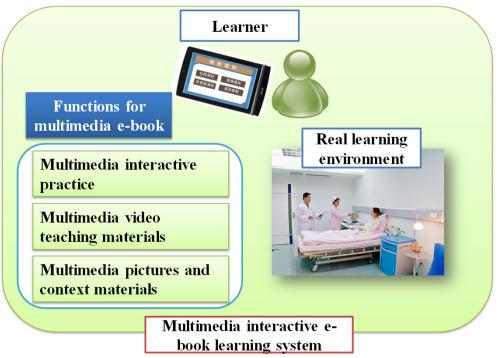

Code	Behavior	Experimental group (n)	Mean	Control group (n)	Mean
S 1	Selection of a task	350	7.00	357	7.00
S2	Field observation	155	3.10	40	0.78
S3	Clue search	66	1.32	45	0.88
S4	Comparison	95	1.90	30	0.59
S5	Data search	109	2.18	58	1.14
S6	Reading supplementary materials	140	2.80	184	3.61
S 7	Review the task	85	1.70	1	0.02
S 8	Pose a method	489	9.78	312	6.12
S9	Correctly recognizing a creature / environment	350	7.00	357	7.00
S10	Correctly comparing a creature / environment	350	7.00	357	7.00
E1	Lack of patience	10	0.20	26	0.51
E2	Trial and error	15	0.30	24	0.47
E3	Incorrectly identifying a creature / environment	57	1.14	80	1.57
E4	Incorrectly comparing a creature / environment	113	2.26	125	2.45
E5	Suspending the learning activity	0	0.00	0	0.00
	Total	2384	47.68	1996	39.14

Variable	Group	Ν	Mean	S.D.	t	d
Field observation	Exp	50	3.10	2.88	5.34***	1.069
Field Observation	Con	51	0.78	1.06		
Clue search	Exp	50	1.32	1.35	1.68	0.334
Ciue search	Con	51	0.88	1.28		
Comparison	Exp	50	1.90	2.48	3.53**	0.704
Comparison	Con	51	0.59	0.88		
Data search	Exp	50	2.18	2.18	2.92**	0.582
Data search	Con	51	1.14	1.28		
Reading supplementary	Exp	50	2.80	3.80	-1.17	-0.233
materials	Con	51	3.61	3.12		
Total	Exp	50	11.30	6.73	3.71***	0.739
101a1	Con	51	7.00	4.74		

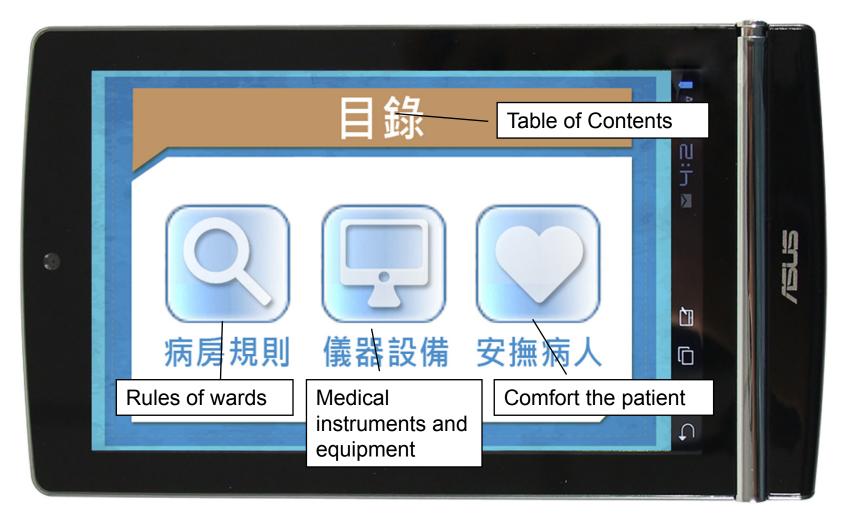
 $p^{**}p < 0.01; p^{***}p < 0.001$


Ŀ,

Experimental group' behavior transfer relationships


29

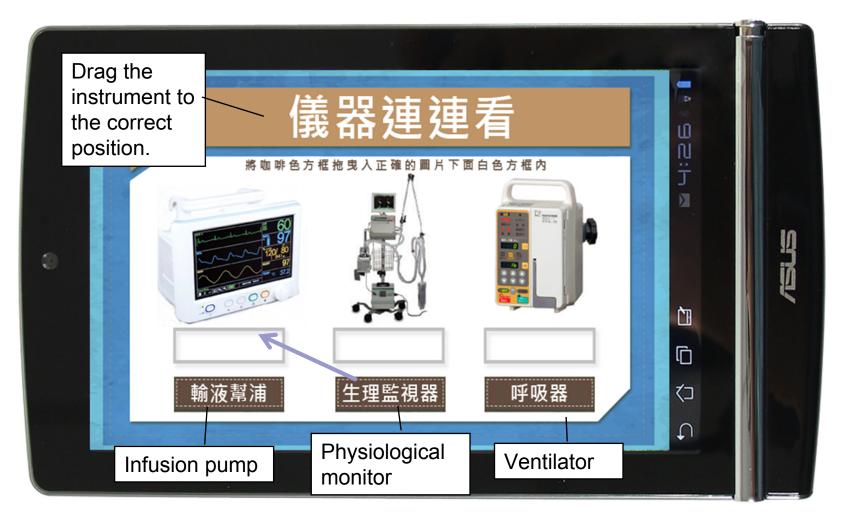
Control group' behavior transfer relationships


Effects of the use of interactive e-books by intensive care unit patients' family members: Anxiety, learning performances and perceptions

seldom-considered subjects: patients' family members

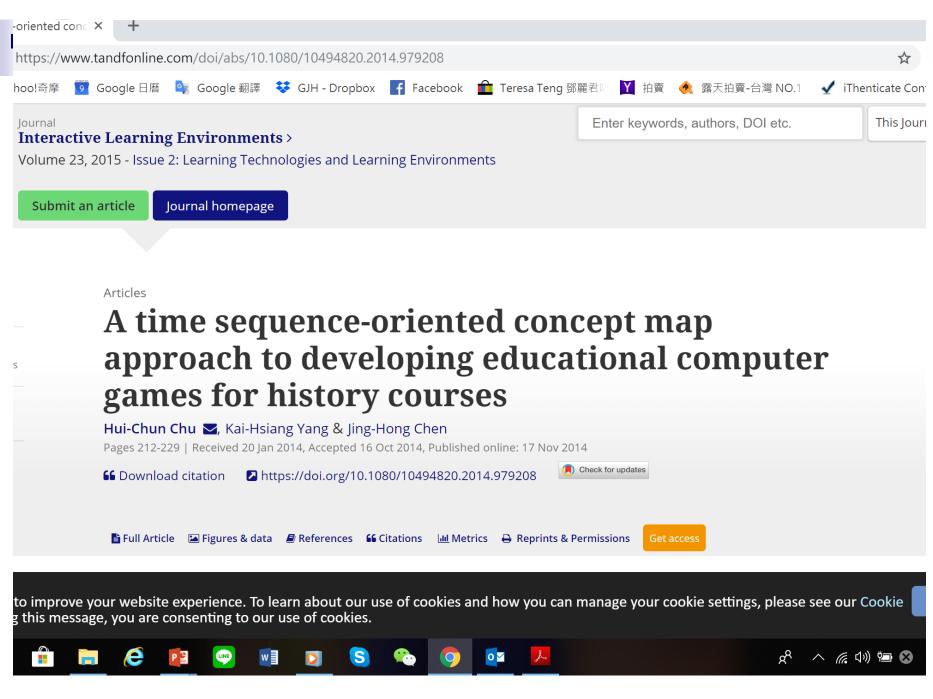
Lee, S. Y., Wang, T. J., <u>Hwang, G. J.</u>, Chang, S. C. (2018). Effects of the use of interactive e-books by intensive care unit patients' family members: anxiety, learning performances and perceptions. *British Journal of Ecuational Technology*. doi: 10.1111/bjet.12611 (SSCI) 31

Content in the e-book


Tips and strategies for publishing SSCI papers

Medical instruments and equipment

Tips and strategies for publishing SSCI papers


Small test- identify the equipment

Tips and strategies for publishing SSCI papers

Brainstorming

- Try to find 10 different ways of using concept maps in a class
 - Different purposes (e.g., summarize the learning content, barnstorming)
 - Different forms (e.g., fill-in-blank)
 - Different applications (e.g., Science vs historical course)

pt Mapping Approach to F	Promoting Students' Attentional behavior.pdf - Adobe Acrobat Pro DC
見窗(W) 說明(H)	
18-ETS-A Votabl ×	
Q	(1) (1) <th(< td=""></th(<>

Sun, J. C.-Y., Hwang, G.-J., Lin, Y.-Y., Yu, S.-J., Pan, L.-C., & Chen, A. Y.-Z. (2018). A Votable Concept Mapping Approach to Promoting Students' Attentional Behavior: An Analysis of Sequential Behavioral Patterns and Brainwave Data. *Educational Technology & Society, 21* (2), 177–191.

A Votable Concept Mapping Approach to Promoting Students' Attentional Behavior: An Analysis of Sequential Behavioral Patterns and Brainwave Data

Jerry Chih-Yuan Sun^{1*}, Gwo-Jen Hwang², Yu-Yan Lin¹, Shih-Jou Yu¹, Liu-Cheng Pan¹ and Ariel Yu-Zhen Chen¹

¹Institute of Education, National Chiao Tung University, Taiwan // ²Graduate Institute of Digital Learning and Education, National Taiwan University of Science and Technology, Taiwan // csun@nctu.edu.tw // gjhwang.academic@gmail.com // aoisora.nagi@gmail.com // logotowa@gmail.com // bulaike1234@gmail.com // Ariel.Chen1216@gmail.com

*Corresponding author

ABSTRACT

This study explores the effects of integrated concept maps and classroom polling systems on students' learning performance, attentional behavior, and brainwaves associated with attention. Twenty-nine students from an Educational Research Methodology course were recruited as participants. For data collection, inclass quizzes, attentional behavior analysis, and a 20-minute structured interview were applied, and the attention-associated brainwaves of the participants were measured. In the first week, a group-polling method was introduced in class; in the second week, participants were asked to draw concept maps using pen and paper (PnP concept mapping); and in the third week, the polling system and concept maps were integrated (votable concept mapping) and applied. The results showed that the PnP concept mapping

📧 🔒 🧀 📴 💽 😒 🎭 🧔 🔯 🔼

37

Knowing more learning strategies via reading papers

Concept mapping, Game-based learning, Two-tier test, Problem posing, Aggressive prompting, WATA (Web-based Assessment and Test Analysis), WSQ (Watch, Summarize, question), Repertory grid, Collaborative learning, Projectbased learning, Inquiry-based learning, WebQuest, Peer assessment, Self-regulated learning, Flipped learning, Problem-based learning, Video sharing, Digital storytelling, Competitions, Jigsaw II, Spreadsheet as Mindtool, Web issue-quest, Adaptive learning, Role-play strategy, active learning-promotion mechanism, collaborative issue-quest promotion mechanism, Creative thinking strategy

Peer-assessment

- Lai, C. L., & <u>Hwang*, G. J.</u> (2015). An interactive peerassessment criteria development approach to improving students' art design performance using handheld devices. *Computers & Education, 85*, 149-159.
- Hsia, L. H., Huang, I., & <u>Hwang*, G. J.</u> (2016). Effects of different online peer-feedback approaches on students' performance skills, motivation and self-efficacy in a dance course. Computers & Education, 96, 55-71.
- Hsia, L. H., Huang, I., & <u>Hwang*, G. J.</u> (2016). A webbased peer-assessment approach to improving junior high school students' performance, self-efficacy and motivation in performing arts courses. British Journal of Educational Technology, 47(4), 618-632.

Knowing more research issues via reading papers

learning achievement, learning motivation, learning attitude, critical thinking, problem-solving, communication, collaboration, creative thinking, Metacognition, skills, self efficacy, learning anxiety, flow experience, self-regulation ability, learning satisfaction, cognitive load, technology acceptance, learning behavioral patterns, interactive patterns, questioning ability, self-directed learning, learning styles, cognitive styles, oral ability, writing ability, hearing ability, reading comprehension, art performing, approaches to learning science, scientific epistemic beliefs

How to measure?

Knowing more educational theories via reading papers

- Scaffolding Theory
- Cognitive apprenticeship
- Constructivism
- Situated learning
- Social constructivism
- Cognitive theory of multimedia learning

What are the connections between the theories, issues and strategies?

Check list of a research design

- What are the innovations and contributions in this study?
 - Innovative technology, strategy, application, subjects or issues?
- What are the learning content and objectives (e.g. course unit)?
- Who are the participants or subjects of the experiment (e.g., age, grade, number, gender)?
- What are you going to measure? What are your research questions?
- What are the educational theories supporting your strategies or findings?

Gwo-Jen Hwang, Chair Professor

http://www.idlslab.net/

Professor Gwo-Jen Hwang is currently a Chair Professor at the Graduate Institute of Digital Learning and Education, National Taiwan University of Science and Technology. His academic expertise includes mobile and ubiquitous learning, game-based learning, and applications of artificial intelligence in education. He has presided over more than 100 projects and received numerous research awards, including 2007, 2010, and 2013 National Science Council Distinguished Research Awards, and the 2019 Ministry of Education National Excellent Teacher Award.

Professor Hwang has published more than 750 papers, including more than 400 journal articles, of which nearly 280 have been published in SSCI journals. He is currently on the review board of more than 40 SSCI/SCI/EI academic journals, as well as the Associate Editor of IEEE Transactions on Education (SCI), the Editor-in-Chief of the International Journal of Mobile Learning and Organisation, and Journal of Computers in Education. Times World University Ranking announced the 10 most prolific and most cited researchers in 2016 (based on statistics from 2011 to 2015) and Professor Hwang is the world's top-ranked scholar in social sciences. https://www.timeshighereducation.com/news/ ten-most-prolific-and-most-cited-researchers

10 most prolific and most cited researchers in 2011-2015

https://www.timeshighereducation.com/news/ten-most-prolific-and-most-cited-researchers

Subject area	Name	Institution	Country	Research area	Publications	Citations per publication
Computer science	Peng Shi	Victoria University	Australia	Computational intelligence	250	31.9
Biochemistry, genetics and molecular biology	Cornelia van Duijn	Erasmus University Rotterdam	Netherlands	Genetic epidemiology	195	52.5
Business, management and accounting	Kee Hung Lai	Hong Kong Polytechnic University	Hong Kong	Logistics and shipping	50	25.1
Chemistry	Michael Grätzel	École Polytechnique Fédérale de Lausanne	Switzerland	Photonics and interfaces	275	66.6
Economics, econometrics and finance	Daron Acemoglu	Massachusetts Institute of Technology	United States	Political economy	52	22.9
Engineering	Frede Blaabjerg	Aalborg University	Denmark	Energy and electronics	448	14.5
Mathematics	Francisco Herrera	University of Granada	Spain	Soft computing and intelligence information systems	106	32.7
Neuroscience	Ronald Karl Petersen	Mayo Clinic, Rochester	United States	Cognitive impairment and dementia	121	58.7
Physics and astronomy	Arnulf Quadt	University of Göttingen	Germany	Hadron collider physics	599	42.9
Social sciences	Gwojen Hwang	National Taiwan University of Science and Technology (Taiwan Tech)	Taiwan	Education and learning	101	20.6

